
Automatic Extraction of JPF Options and

Documentation

Wojciech Luks1, Oksana Tkachuk2, David Bushnell2

1 AGH University of Science and Technology, Cracow, Poland
2 NASA Ames Research Center, Moffett Field, CA, USA

Abstract. Documenting existing Java
PathFinder (JPF) projects or developing new
extensions is a challenging task. JPF pro-
vides a platform for creating new extensions
and relies on key-value properties for their
configuration. Keeping track of all possible
options and extension mechanisms in JPF can
be difficult.
This paper presents jpf-autodoc-options, a
tool that automatically extracts JPF projects’
options and other documentation-related
information, which can greatly help both JPF
users and developers of JPF extensions.

I INTRODUCTION

Java PathFinder (JPF) [1] is an open source, explicit
state software model checker for Java bytecode. In
addition to providing a configurable model checking
engine, JPF serves as a platform for various exten-
sions (e.g., symbolic execution and state chart model
checking). To provide flexibility and a plug-in archi-
tecture, JPF has a wide range of configuration op-
tions and extension mechanisms. The configuration
options allow users to easily control many aspects of
the execution of existing components. The extension
mechanisms make it easy to develop new plugins.

JPF relies on key-value properties for configuring
its components, but currently there is no systematic
way to document them. Working with such a system
is difficult not only for new JPF users but also for
experienced ones who work with JPF on a daily basis.
This problem creates the need for a tool that can
collect all options in a single place.

In this paper we present a tool, called
jpf-autodoc-options, which addresses the above
problems. Our tool statically analyzes existing JPF
projects, extracts the information related to JPF op-
tions and extension mechanisms, and saves the ex-
tracted data using XML and wiki formats. XML is
a popular and easy to parse format used for stor-
ing large collections of structured data. Wiki for-

mat has become a popular format for project doc-
umentation. More and more projects nowadays are
stored in repositories like Google Project Hosting [2],
where wiki format is commonly used for creating doc-
umentation. Moreover, Google Project Hosting is a
planned target repository for JPF projects.

II TOOL DESCRIPTION

The jpf-autodoc-options tool is a JPF extension
packaged as a stand-alone project (i.e., it does not
require jpf-core [3] in its path to run).

Figure 1: Tool Architecture.

Figure 1 shows the high-level architecture of the
tool. The tool uses the following external libraries:
Castor XML [4] for handling XML files, Apache
Commons CLI [5] for user-specified (command-line)
arguments, and a single jpf-core package called

1

Categ Java Source ByteCode (excerpts)

Option printInsn = config.getBoolean(ldc @6(et.print insn)

"et.print insn", false); iconst 0

invokevirtual @7("gov/nasa/jpf/Config",

"get Boolean","(Ljava/lang/String;Z)Z")

Annot @JPFOption(type = "Boolean", Lgov/nasa/jpf/annotation/JPFOption; valueCount=4

key="et.print insn", defaultValue="true", type="Boolean"

comment="print executed bytecode key="et.print insn"

instructions") defaultValue="true"

comment="print executed bytecode instructions"

Logger static Logger log = JPF.getLogger(ldc @73(gov.nasa.jpf.listener.IdleFilter)

"gov.nasa.jpf .listener.IdleFilter"); invokestatic @74("gov/nasa/jpf/JPF","getLogger",

"(Ljava/lang/String;)Lgov/nasa/jpf/util/ JPFLogger;")

CG vm.getSystemState(). aload 1

setNextChoiceGenerator(cg); invokevirtual @241("gov/nasa/jpf/jvm/System State",

"setNextChoiceGenerator",

"(Lgov /nasa/jpf/jvm/ChoiceGenerator;)Z")

DCSF DirectCallStackFrame frame = new invokevirtual @207("gov/nasa/jpf/jvm/

DirectCallStackFrame(mainStub, 1, 0); DirectCallStackFrame","pushRef","(I)V")

Table 1: Examples of Information Tracked by jpf-autodoc-options

gov.nasa.jpf.classfile. This package handles the
reading of bytecode for an analyzed JPF project.
The inputs to jpf-autodoc-options are the JPF
projects to be analyzed and an XML schema used by
Castor; the outputs are XML and wiki files, with in-
formation about the projects’ configuration options,
including potential inconsistencies and errors. The
generated XML file can also be used as an input to
be converted into the wiki files.

Currently, the tool supports extraction of the fol-
lowing types of information:

• Options: To configure options, JPF uses a cen-
tral dictionary object gov.nasa.jpf.Config,
which is initialized through a hierarchical set
of Java property files that target three dif-
ferent initialization layers: site, project, and
application [6]. The tool tracks all Config

usages by looking for calls of the form
config.get...(String, ...). Here, the name
of the method describes the type of the option.
The first parameter is usually the name of the
option, and the rest of the parameters specify
additional information, for example, the value of
the option. The Option row in Table 1 shows an
example of both Java source code and the corre-
sponding bytecode for loading a Boolean option
called et.print_insn with value false.

• Option Annotations: JPF developers are en-
couraged to use @JPFOption annotations to doc-
ument JPF options. In addition to information
covered by the config.get...(String, ...)

call, the developers can add comments and doc-
ument default values for the options. The
Annot row of Table 1 shows an example
of an annotation for the et.print_insn op-
tion. It is important to check that annota-

tions are consistent with the code. Therefore
jpf-autodoc-options, by default, checks for
consistency between implemented options and
their annotations.

• Loggers: To perform logging, JPF uses the
JPFLogger class. The tool tracks all classes
that call the JPF.getLogger(String) API. The
Logger row in Table 1 shows an example of get-
ting a logger named IdleFilter.

• ChoiceGenerators: ChoiceGenerators are
used to implement new data or thread choices.
They are examples of possible extension mech-
anisms and, therefore, useful for developers
of new extensions. The tool tracks meth-
ods that register choice generators via the
SystemState.setNextChoiceGenerator() or
getSystemState.setMandatoryNextChoiceGe-

nerator() API. The CG row in Table 1 shows
an example of a CG registration.

• DirectCallStackFrames: These are used
to implement invocation of synthesized meth-
ods (not visible in bytecode). Similar to
ChoiceGenerator, they are used by developers
and together with ChoiceGenerators can lead
to potential ill effects on robustness and com-
patibility of extensions. The tool tracks meth-
ods that create DirectCallStackFrames, i.e., its
constructor. The DCSF row in Table 1 shows
an example of a DirectCallStackFrame instan-
tiation.

II.1 Static Analysis

The jpf-autodoc-options tool performs static anal-
ysis at the bytecode level. Using the standard JPF
bytecode reader, the tool parses classes under test

2

Categ Documentation

Option et.print insn - print executed bytecode instructions
defined in: gov.nasa.jpf.listener.ExecTracker

type: Boolean
default: True
used in: gov.nasa.jpf.listener.ExecTracker

type: Boolean
default: False

Logger gov.nasa.jpf.listener.IdleFilter
gov.nasa.jpf.listener.IdleFilter

type: JPF.getLogger

CG gov.nasa.jpf.jvm.MJIEnv

type: setNextChoiceGenerator
method: setNextChoiceGenerator

DCSF gov.nasa.jpf.jvm.JVM

method: pushMainEntry

Table 2: Examples of Generated Documentation

and searches for specific Java bytecode instructions
corresponding to each category shown in Table 1. For
example, to identify Options, the tool searches for
invokevirtual instructions with the class name at-
tribute "gov/nasa/jpf/Config". The tool searches
for 32 different getter APIs from the Config class and
treats them differently depending on the method sig-
nature (e.g., the number and types of parameters to
track). The option example in the first row of Table 1
is one of the easiest, with a Boolean value, iconst 0,
which corresponds to false, and the ldc instruction
with the key name et.print insn.

Config APIs are the most complex to parse; the
rest of the categories are parsed in a similar manner:
each API is treated based on the bytecode pattern it
produces.

II.2 Output Generation

After checking all project files, the obtained data is
printed to an XML file using the Castor [4] XML
framework. The XML output adds flexibility to the
tool, especially if more extensions are to use its out-
put in the future (for example, the jpf-shell [7]
extension).

Currently, the tool supports generation of wiki
pages and uses its own translator to generate wiki
files from XML. While generating files, the tool com-
bines the information about the same options and
checks for inconsistencies among them. For example,
the tool checks for multiple occurrences of the same
option and inconsistencies between the options’ im-
plementation and their corresponding annotations.

Table 2 shows the documentation generated for
the examples in Table 1. The Option row shows
that the et.print_insn option has inconsistencies:
its value in the Java source is different from the value
defined by its annotation.

The generated documentation is formatted using
Google Project Hosting Wiki Syntax [8]. To make
wiki easy to view and see potential inconsistencies,
the tool employs the color scheme shown in Table 3
for key names. For example, an option highlighted in
orange contains inconsistencies between its API call
and annotation.

Color Description

green The call and annotation are
the same

orange The call and annotation have
different values

blue The call or annotation
definition is missing

red There is more than one call
or annotation for a key

Table 3: Keys Color Scheme

III TOOL USAGE

The tool offers a command-line interface, built on top
of the Commons CLI library [5]). Table 4 shows the
command-line arguments the users can specify. The
user can:

Generate an XML file for a project under test:
jpf-autodoc-options -cp ../jpf-core/build/ -xml

Generate wiki pages from an XML file:
jpf-autodoc-options -cp jpf options list.xml -wiki

Generate wiki and XML files:
jpf-autodoc-options -cp ../jpf-core/build/ -wiki

3

Option Value Description

bytecode view bytecode of classfile
cp [path] class path to analyze
dirs analyze CLASS files
help print this message
jars analyze JAR archives
name [name] name of project (added

as a prefix to generated files)
outdir [path] directory to save files
print print data to console after

analysis
test generate test files
wiki generate documentation files
xml generate an XML output file

Table 4: Tool Command-Line Arguments

IV EXPERIENCE

The jpf-autodoc-options tool has been success-
fully applied to several JPF extensions: jpf-core

[3], jpf-awt [9] and jpf-bfs [10]. The tool found
several errors in the development version of the
jpf-bfs project: there were spelling errors in the an-
notation definitions and a double-definition for one
of the option keys. This experience confirms that
jpf-autodoc-options can be effective in generating
project documentation and detecting errors.

IV.1 Limitations

While the tool tries to identify all possible option def-
initions and implementations, there are limitations to
what the tool can do. Because the tool is based on
static analysis techniques, it cannot identify values
that are dynamically loaded. In such cases, the tool
generates ”dynamic” keys and values in the docu-
mentation.

In terms of scope, our tool performs local intrapro-
cedural analysis that may miss interprocedural data
flow. We could implement a more sophisticated anal-
ysis, similar to [11], which first builds costly points-
to and call graphs for the project under test. How-
ever, we deliberately chose a lightweight local analysis
to enforce coding conventions that make it easier to
understand and maintain jpf projects. Cases where
our analysis cannot track some options and gener-
ates ”dynamic” keys should serve as a suggestion to
developers to simplify the configuration of their ex-
tensions.

V CONCLUSIONS AND FUTURE
WORK

We presented jpf-autodoc-options [12], a tool for
automatic extraction of options and documentation
for JPF projects. The tool collects all JPF project
options in one place and generates documentation

while checking for possible inconsistencies among the
options. The tool can be helpful while working with
existing JPF extensions, as well as when developing
new ones.

In the future, we plan to combine
jpf-autodoc-options with another similar tool
called jpf-autodoc-types [13], which extracts
information about various types in the JPF projects
(e.g., listeners, native peers, and model classes).
Together, both tools can be used to generate JPF
project documentation. In addition, we plan to
extend jpf-shell [7] to work with the autodoc

tools. Finally, we plan to communicate with the
JPF community, which we hope will adapt our tool
to document their projects.

VI ACKNOWLEDGMENTS

We would like to thank Google Summer of Code pro-
gram for sponsoring this project and the JPF team
for their constant help with JPF.

References

[1] Java PathFinder Tool-set.
http://babelfish.arc.nasa.gov/trac/jpf

[2] Google Project Hosting.
http://code.google.com/hosting/

[3] jpf-core. http://babelfish.arc.nasa.gov/trac/
jpf/wiki/projects/jpf-core

[4] Castor Project. http://www.castor.org

[5] Apache Commons CLI.
http://commons.apache.org/cli

[6] Configuring JPF. http://babelfish.arc.nasa.gov/
trac/jpf/wiki/user/config

[7] jpf-shell. http://babelfish.arc.nasa.gov/trac/
jpf/wiki/projects/jpf-shell

[8] Google Project Hosting Wiki Syntax.
http://code.google.com/p/support/wiki/
WikiSyntax

[9] jpf-awt. http://babelfish.arc.nasa.gov/trac/
jpf/wiki/projects/jpf-awt

[10] jpf-bfs. http://code.google.com/p/jpf-bfs

[11] A. Rabkin and R. Katz. Static Extraction of
Program Configuration Options. In ICSE, 2011

[12] jpf-autodoc-options.
http://code.google.com/p/jpf-autodoc-options/

[13] jpf-autodoc-types. http://bitbucket.org/
carlos uribe/jpf-automatic-doc

4

